Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 491, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828495

RESUMO

BACKGROUND: Hemerocallis citrina Baroni is a traditional medical and edible plant. It is rich in flavonoid compounds, which are a kind of important bioactive components with various health benefits and pharmaceutical value. However, the flavonoid metabolomics profile and the comparison of flavonoid compounds from different parts of H. citrina is scarce. RESULTS: In this study, flavonoid metabolites were investigated from roots, stems, leaves and flowers of H. citrina. A total of 364 flavonoid metabolites were identified by UPLC-MS/MS based widely targeted metabolomics, and the four plant parts showed huge differences at flavonoid metabolic level. Compared to roots, 185, 234, and 119 metabolites accounted for upregulated differential flavonoid metabolites (DFMs) in stems, leaves, and flowers, respectively. Compared to stems, 168 and 29 flavonoid metabolites accounted for upregulated DFMs in leaves and flowers, respectively. Compared to leaves, only 29 flavonoid metabolites accounted for upregulated DFMs in flowers. A number of 35 common flavonoid metabolites were observed among six comparison groups, and each comparison group had its unique differential metabolites. The most abundant flavonoid metabolites in the four parts are flavonols and flavones, followed by flavanones, chalcones, flavanols, flavanonols, anthocyanidins, tannin, and proanthocyanidins. 6,7,8-Tetrahydroxy-5-methoxyflavone, 7,8,3',4'-tetrahydroxyflavone, 1-Hydroxy-2,3,8-trimethoxyxanthone, Farrerol-7-O-glucoside, 3',7-dihydroxy-4'-methoxyflavone, 3,3'-O-Dimethylellagic Acid, 5-Hydroxy-6,7-dimethoxyflavone, Nepetin (5,7,3',4'-Tetrahydroxy-6-methoxyflavone), (2s)-4,8,10-trihydroxy-2-methoxy-1 h,2 h-furo[3,2-a]xanthen-11-one are dominant in roots. Isorhamnetin-3-O-(6''-malonyl)glucoside-7-O-rhamnoside, 7-Benzyloxy-5-hydroxy-3',4'-methylenedioxyflavonoid, 3-Hydroxyphloretin-4'-O-glucoside are dominant in stems. Chrysoeriol-7-O-glucoside, Epicatechin glucoside, Kaempferol-3-O-rhamnoside (Afzelin)(Kaempferin)*, Azaleatin (5-O-Methylquercetin), Chrysoeriol-5-O-glucoside, Nepetin-7-O-glucoside(Nepitrin), 3,5,7,2'-Tetrahydroxyflavone; Datiscetin, Procyanidin B2*, Procyanidin B3*, Procyanidin B1, Isorhamnetin-3-O-(6''-acetylglucoside) are dominant in leaves. kaempferol-3-p-coumaroyldiglucoside, Delphinidin-3-O-sophoroside-5-O-glucoside, Limocitrin-3-O-sophoroside, Kaempferol-3-O-rutinoside(Nicotiflorin), Luteolin-7-O-(6''-malonyl)glucoside-5-O-rhamnoside are dominant in flowers. CONCLUSION: There was significant difference in flavonoid metabolites among different parts of H. citrina. Leaves had relative higher metabolites contents than other parts. This study provided biological and chemical evidence for the different uses of various plant parts of H. citrina, and these informations are important theoretical basis for the food industry, and medical treatment.


Assuntos
Hemerocallis , Quempferóis , Cromatografia Líquida , Espectrometria de Massas em Tandem , Flavonoides/química , Glucosídeos
2.
Ultrasonics ; 132: 106988, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37003206

RESUMO

Surface acoustic wave (SAW) filter with a low insertion loss (IL) of 4.415 dB has been demonstrated on Carbon-doped semi-insulating c-plane bulk GaN without external lumped element matching. The center frequency, 3 dB bandwidth, out-of-band attenuation, return loss of the filter are 477.05 MHz, 0.308 MHz, 32.5 dB, and -9.72 dB, respectively. The electromechanical coupling coefficient (Kt2), and temperature coefficient of frequency (TCF) of the filter are 0.21 % and -26.0 ppm/°C, respectively. The impact of the number of interdigital transducers (NIDT) and acoustic propagation direction on filter performance has been studied. The IL of filters reduces from 16.07 dB to 4.415 dB with the increase of NIDT from 50 to 150 due to the enhanced acoustic superposition. The numerical distribution of elastic stiffness ([cij]), and piezoelectric constants ([eik]) of GaN has been calculated in Euler angle space, indicating that they are isotropic on c-plane. The small performance difference of filters along the m- and a-direction on c-plane bulk GaN can be attributed to the small offset angle of 0.5° of the bulk GaN wafer or IDT quality variation.

3.
Mol Ecol ; 32(13): 3524-3540, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37000417

RESUMO

Early events in the evolution of an ancestral lineage can shape the adaptive patterns of descendant species, but the evolutionary mechanisms driving initial adaptation from an ancestor remain largely unexplored. High-altitude adaptations have been extensively explored from the viewpoint of protein-coding genes; however, the contribution of noncoding regions remains relatively neglected. Here, we integrate genomic and transcriptomic data to investigate adaptive evolution in the ancestor of three high-altitude snowfinch species endemic to the Qinghai-Tibet Plateau. Our genome-wide scan for adaptation in the snowfinch ancestor identifies strong adaptation signals in functions of development and metabolism for the coding genes, but in functions of the nervous system development for noncoding regions. This pattern is exclusive to the snowfinch ancestor compared to a control ancestral lineage subject to weak selection. Changes in noncoding regions in the snowfinch ancestor, especially those nearest to coding genes, may be disproportionately associated with the differential expression of genes in the brain tissue compared to other tissues. Extensive gene expression in the brain tissue can be further altered via genetic regulatory networks of transcription factors harbouring potential accelerated regulatory regions (e.g., the development-related transcription factor YEATS4). Altogether, our study provides new evidence concerning how coding and noncoding sequences work through decoupled pathways in initial adaptation to the selective pressure of high-altitude environments. The analysis highlights the idea that noncoding sequences may be promising elements in facilitating the rapid evolution and adaptation to high altitudes.


Assuntos
Adaptação Fisiológica , Altitude , Passeriformes , Animais , Aclimatação/genética , Adaptação Fisiológica/genética , Passeriformes/genética , Tibet
4.
Front Microbiol ; 13: 848906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663854

RESUMO

Gut microbial communities of animals play key roles in host evolution, while the relationship between gut microbiota and host evolution in Tibetan birds remains unknown. Herein, we sequenced the gut microbiota of 67 wild birds of seven species dwelling in the Tibetan wetlands. We found an obvious species-specific structure of gut microbiota among these plateau birds whose habitats were overlapped. Different from plateau mammals, there was no strict synergy between the hierarchical tree of gut microbial community and species phylogeny. In brown-headed gulls (Larus brunnicephalus) as an example, the structure of gut microbiota differed in different habitats, and the relative abundance of bacteria, such as Lactobacillus, Streptococcus, Paracoccus, Lachnospiraceae, and Vibrio, significantly correlated with altitude. Finally, we found various pathogenic bacteria in the birds of these plateau wetlands, and the interspecific differences were related to their diet and living environments.

5.
J Cell Biochem ; 122(12): 1817-1831, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34427342

RESUMO

Cysteine is a crucial component for all organisms and plays a critical role in the structure, stability, and catalytic functions of many proteins. Tetrahymena has reverse transsulfuration and de novo pathways for cysteine biosynthesis. Cysteine synthase is involved in the de novo cysteine biosynthesis and catalyzes the production of cysteine from O-acetylserine. The novel cysteine synthase TtCSA2 was identified from Tetrahymena thermophila. The TtCSA2 showed high expression levels at the log-phase and the sexual development stage. The TtCsa2 was localized on the outer mitochondrial membrane throughout different developmental stages. However, the truncated N-terminal signal peptide mutant TtCsa2-ΔN23 was localized into the mitochondria. His-TtCsa2 was expressed in Escherichia coli and purified using affinity chromatography. The His-TtCsa2 showed O-acetylserine sulfhydrylase and serine sulfhydrylase activities. Cysteine and glutathione contents decreased in the csa2KD mutant. Furthermore, mutant cells were sensitive to cadmium and copper stresses. This study indicated that the TtCSA2 was involved in the cysteine synthesis in mitochondria and related to heavy metal stresses resistance in Tetrahymena.


Assuntos
Cisteína Sintase/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/enzimologia , Cisteína Sintase/genética , Proteínas Mitocondriais/genética , Proteínas de Protozoários/genética , Tetrahymena thermophila/genética
6.
BMC Genomics ; 22(1): 21, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407108

RESUMO

BACKGROUND: Cadmium (Cd) is a nonessential heavy metal with potentially deleterious effects on different organisms. The organisms have evolved sophisticated defense system to alleviate heavy metal toxicity. Hydrogen sulfide (H2S) effectively alleviates heavy metal toxicity in plants and reduces oxidative stress in mammals. However, the function of H2S for alleviating heavy metal toxicity in aquatic organisms remains less clear. Tetrahymena thermophila is an important model organism to evaluate toxic contaminants in an aquatic environment. In this study, the molecular roles of exogenously H2S application were explored by RNA sequencing under Cd stress in T. thermophila. RESULTS: The exposure of 30 µM Cd resulted in T. thermophila growth inhibition, cell nigrescence, and malondialdehyde (MDA) content considerably increase. However, exogenous NaHS (donor of H2S, 70 µM) significantly alleviated the Cd-induced toxicity by inhibiting Cd absorbtion, promoting CdS nanoparticles formation and improving antioxidant system. Comparative transcriptome analysis showed that the expression levels of 9152 genes changed under Cd stress (4658 upregulated and 4494 downregulated). However, only 1359 genes were differentially expressed with NaHS treatment under Cd stress (1087 upregulated and 272 downregulated). The functional categories of the differentially expressed genes (DEGs) by gene ontology (GO) revealed that the transcripts involved in the oxidation-reduction process, oxidoreductase activity, glutathione peroxidase activity, and cell redox homeostasis were the considerable enrichments between Cd stress and NaHS treatment under Cd stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the carbon metabolism, glutathione metabolism, metabolism of xenobiotics by cytochrome P450, and ABC transporters were significantly differentially expressed components between Cd stress and NaHS treatment under Cd stress in T. thermophila. The relative expression levels of six DEGs were further confirmed through quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSION: NaHS alleviated Cd stress mainly through inhibiting Cd absorbtion, promoting CdS nanoparticles formation, increasing oxidation resistance, and regulation of transport in free-living unicellular T. thermophila. These findings will expand our understanding for H2S functions in the freshwater protozoa.


Assuntos
Sulfeto de Hidrogênio , Tetrahymena thermophila , Animais , Cádmio/toxicidade , Perfilação da Expressão Gênica , Sulfeto de Hidrogênio/farmacologia , Malondialdeído , Tetrahymena thermophila/genética , Transcriptoma
7.
Micromachines (Basel) ; 13(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35056205

RESUMO

The impact of device parameters, including AlN film thickness (hAlN), number of interdigital transducers (NIDT), and acoustic propagation direction, on the performance of c-plane AlN/sapphire-based SAW temperature sensors with an acoustic wavelength (λ) of 8 µm, was investigated. The results showed that resonant frequency (fr) decreased linearly, the quality factor (Q) decreased and the electromechanical coupling coefficient (Kt2) increased for all the sensors with temperature increasing from -50 to 250 °C. The temperature coefficients of frequency (TCFs) of sensors on AlN films with thicknesses of 0.8 and 1.2 µm were -65.57 and -62.49 ppm/°C, respectively, indicating that a reduction in hAlN/λ favored the improvement of TCF. The acoustic propagation direction and NIDT did not obviously impact the TCF of sensors, but they significantly influenced the Q and Kt2 of the sensors. At all temperatures measured, sensors along the a-direction exhibited higher fr, Q and Kt2 than those along the m-direction, and sensors with NIDT of 300 showed higher Q and Kt2 values than those with NIDT of 100 and 180. Moreover, the elastic stiffness of AlN was extracted by fitting coupling of modes (COM) model simulation to the experimental results of sensors along different directions considering Euler transformation of material parameter-tensors. The higher fr of the sensor along the a-direction than that along the m-direction can be attributed to its larger elastic stiffness c11, c22, c44, and c55 values.

8.
J Eukaryot Microbiol ; 68(2): e12834, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33190347

RESUMO

Cysteine is implicated in important biological processes. It is synthesized through two different pathways. Cystathionine ß-synthase and cystathionine γ-lyase participate in the reverse transsulfuration pathway, while serine acetyltransferase and cysteine synthase function in the de novo pathway. Two evolutionarily related pyridoxal 5'-phosphate-dependent enzymes, cystathionine ß-synthase TtCBS1 (TTHERM_00558300) and cysteine synthase TtCSA1 (TTHERM_00239430), were identified from a freshwater protozoan Tetrahymena thermophila. TtCbs1 contained the N-terminal heme binding domain, catalytic domain, and C-terminal regulatory domain, whereas TtCsa1 consisted of two α/ß domains. The catalytic core of the two enzymes is similar. TtCBS1 and TtCSA1 showed high expression levels in the vegetative growth stage and decreased during the sexual developmental stage. TtCbs1 and TtCsa1 were localized in the cytoplasm throughout different developmental stages. His-TtCbs1 and His-TtCsa1 were expressed and purified in vitro. TtCbs1 catalyzed the canonical reaction with the highest velocity and possessed serine sulfhydrylase activity. TtCsa1 showed cysteine synthase activity with high Km for O-acetylserine and low Km for sulfide and also had serine sulfhydrylase activity toward serine. Both TtCbs1 and TtCsa1 catalyzed hydrogen sulfide producing. TtCBS1 knockdown and TtCSA1 knockout mutants affected cysteine and glutathione synthesis. TtCbs1 and TtCsa1 are involved in cysteine synthesis through two different pathways in T. thermophila.


Assuntos
Cistationina beta-Sintase , Cisteína Sintase , Tetrahymena thermophila , Cistationina beta-Sintase/genética , Cistationina gama-Liase/genética , Cisteína , Cisteína Sintase/genética , Tetrahymena thermophila/enzimologia , Tetrahymena thermophila/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...